

so we have the integral of (1) in the form

$$I = \int_{\omega_1}^{\omega_2} P(\omega) d\omega = (P_0 \omega_0) / 2 \left[\int_{x_1}^{x_2} (1 + Q_L^2 x^2)^{-1} dx \right. \\ \left. \pm \int_{x_1}^{x_2} x (1 + Q_L^2 x^2)^{-1} (x^2 + 4)^{-1/2} dx \right] \quad (3)$$

where $x_1 = \omega_1 / \omega_0 - \omega_0 / \omega_1$ and $x_2 = \omega_2 / \omega_0 - \omega_0 / \omega_2$. Limits of the integration fulfill the relations $x_1 < 0$ and $x_2 > 0$, if assumptions $\omega_1 < \omega_0$ and $\omega_2 > \omega_0$ are valid. The function in the second integral in (3) is odd, so the value of this integral can be made zero choosing the symmetrical limits of the integration $x_1 = -x_2$.

Hence

$$I = (P_0 \omega_0) / 2 \int_{-x_2}^{x_2} (1 + Q_L^2 x^2)^{-1} dx = P_0 \omega_0 \int_0^{x_2} (1 + Q_L^2 x^2)^{-1} dx \\ = P_0 \omega_0 Q_L^{-1} \tan^{-1}(Q_L x_2). \quad (4)$$

Using notation $\omega_s = \omega_2 - \omega_1$, $\omega_s \ll \omega_0$, we have $x_2 \approx \omega_s / \omega_0$, and (4) has the final form

$$I = P_0 \omega_0 Q_L^{-1} \tan^{-1}(Q_L \omega_s \omega_0^{-1}).$$

REFERENCES

- [1] I. Kneppo, "Integration method of measuring Q of the microwave resonators," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-26, no. 2, Feb. 1978.
- [2] C. G. Montgomery, R. H. Dicke, and E. M. Purcell, *Principles of Microwave Circuits*. New York: Dover, 1965, ch. 7, sec. 7.14, cyn 67, p. 239.
- [3] I. S. Gradshteyn and I. M. Ryzhik, *Table of Integrals, Series, and Products*, 4th ed. New York: Academic, 1965, sec. 2.161, no. 3, p. 67.

Corrections to "A Quasi-Optical Polarization Duplexed Balanced Mixer for Millimeter-Wave Applications"

KARL STEPHAN, NATALINO CAMILLERI, AND TATSUO ITOH

In the above referenced paper¹, the following corrections should be made.

On page 166, the first full sentence should read, "...using the saddlepoint equations given in [4]..."

On page 166, equation (21) should be

$$P = \iint_{\text{sphere}} \frac{\frac{1}{2}(|E_\theta|^2 + |E_\phi|^2)}{Z_{fs}} ds.$$

On page 168, the first sentence of the second full paragraph should read, "Using the measured antenna patterns for the 10-GHz model, an approximate directivity on the dielectric side was calculated to be 5.5 dB..."

On page 169, Table II, line 10 should read "Measured conversion loss: 6.5 dB \pm 3 dB."

Manuscript received April 12, 1983.

The authors are with the Department of Electrical Engineering, University of Texas at Austin, Austin, TX 78712.

¹K. Stephan, N. Camilleri and T. Itoh, *IEEE Trans. Microwave Theory Tech.*, vol. MTT-31, pp. 164-170, Feb. 1983.